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ABSTRACT

Patient-specific cardiac models can be used to improve the diagnosis of cardiovascular

diseases. However, practical application of these models is impeded by the computational

costs and numerical uncertainties of fitting them to clinical measurements from individual

patients. Reliable and efficient model tuning within medically-appropriate error bounds is a

requirement for practical deployment in the time-constrained environment of the clinic. In

this work, we present a framework to efficiently tune parameters of patient-specific mech-

anistic models using routinely acquired non-invasive patient data with a hybrid particle

swarm and pattern search optimization algorithm.

The proposed framework is used to tune full-cycle lumped parameter circulatory mod-

els using clinical data obtained from patients as well as canine subjects; showing that the

framework can be easily adapted to optimize cross-species models. It is also used to simul-

taneously obtain the unloaded geometry and passive myocardial material parameters of four

left-ventricular cardiac finite element models constructed from canine subject MRI data.

This demonstrates that the proposed approach can support the use of complex models to

obtain data that cannot be directly measured. The patients gave informed consent and

the canine subject studies were approved by the local Institutional Review Boards. The

optimized results in all case studies were within acceptable error tolerances.

Additionally, the framework is extended to include uncertainty quantification – support-

ing model tuning with often-unreliable data sources that are ill-suited to a deterministic

approach. The proposed approach for probabilistic model tuning discovers distributions

of model inputs which generate target output distributions. Probabilistic sampling is per-

formed using a model surrogate for computational efficiency and a general distribution

parameterization is used to describe each input. The approach is tested on four test cases
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using CircAdapt, a cardiac circulatory model. Three test cases are synthetic, aiming to

match the output distributions generated using known reference input data distributions,

while the fourth example uses real-world patient data for the output distributions to obtain

the input distribution. The results demonstrate accurate reproduction of the target output

distributions, with accurate recreation of reference inputs for the three synthetic examples.

Overall, this work automates the use of biomechanics and circulatory cardiac models

in both clinical and research environments by ameliorating the tedious process of manually

fitting model parameters and supports the use of more complex models in practice through

the quantification of error.
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CHAPTER 1. INTRODUCTION

Cardiovascular disease (CVD) has been the leading global cause of death for the last

decade, causing roughly a third of total deaths in 2010 (World Health Organization, 2008).

Mortality rates due to CVD have risen owing to lifespan increases in high-income coun-

tries (The World Bank, 2012). The United States, for example, spent an estimated $193

billion on the treatment of CVD and stroke between 2011 and 2012, more than double the

treatment cost of cancer. An additional $123 billion of future productivity was lost due to

premature deaths (Fuchs and Milstein, 2011).

The cost of treating CVD in the US is significantly higher, for sub-par life expectancy,

than other high-income countries (Mozaffarian et al., 2015). Efforts to improve treatment

efficiency, such the American College of Cardiologys Appropriate Use Criteria for cardiovas-

cular technology (Hendel et al., 2013), are hamstrung by limited adherence to clinical best

practices (Mehta et al., 2007). As an example, only 66.5% of coronary artery disease pa-

tients received the optimal evidence-based combination of treatments during their first visit

in 2013 (Maddox et al., 2014). Aside from missed treatment opportunities, these therapies

have a large societal cost in the form of adverse drug reactions and unnecessary resource

use (Landrigan et al., 2010). Consistent evaluation of treatment value and risk is necessary

to correct these inefficiencies; however, the aggregate value of potential outcomes can be

complicated to define or evaluate (Porter, 2010).

Patient data is widely used to improve risk classification and treatment based on pop-

ulation statistics (Gaziano et al., 2005; Ferrario et al., 2005; Wilson et al., 1998). While

certain acute medical episodes may have clearly preferred treatment strategies, preventa-
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tive procedures and the management of chronic illness often involve subjective trade-offs.

In these cases, there are often important details in patient data that could impact diagno-

sis. Unfortunately, declines in cardiac examination skills (Vukanovic-Criley et al., 2006) and

patient-physician interaction time (Dugdale et al., 1999) have led to a decrease in diagnostic

accuracy.

Computer-based decision support systems offer an opportunity for improved treatment

efficiency. These technologies are often minimally invasive and make use of commonly

recorded medical data to supplement understanding of a patients condition. Future versions

of these models could suggest alternate diagnoses and treatments informed by the rapid

developments in machine learning techniques. Physical models have been a foundational

category of computer-based medical decision aids for at least 30 years (Shortliffe et al., 1979),

and advances in algorithms and computing power continue to improve the tractability of

higher-fidelity analysis (Baillargeon et al., 2014). However, while computational models can

be used to more efficiently and thoroughly understand a complex system than experiments at

a reduced cost, many components require manual or automated tuning of model parameters

to properly capture the modeled system.

The deployment of more complex models is currently limited by the expensive tuning of

many patient-specific parameters and the level of training required to initialize and operate

them. Additionally, the values of these parameters are often determined using experimental

or reference data, either directly or indirectly via dependent model values. Available data

is often unreliable which impedes consistent tuning and must be accounted for to fully

determine the accuracy of a result.

I propose an optimization-based framework to support the wider application of patient-

specific physical models to the treatment of CVD. Optimization provides a useful framework

to bridge the gap between available models and patient data by automating the parameter

selection process. The main contributions of this dissertation include the development of:
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1. A framework to automatically tune biomechanics and circulatory cardiac

models using patient-specific data

Cardiovascular applications of optimization have focused on shape optimization of

cardiac geometry using idealized template meshes. Recently, biomechanics and cir-

culatory models have increased in complexity, allowing them to capture the physics

more accurately. However, improvements in optimization methodologies have not been

widely applied specifically to parameter estimation of these physics models. Marsden

et al. (2008) used the surrogate management framework (SMF) for shape optimization

with a general biophysical model. Agoshkov et al. (2006) used an adjoint approach

to geometrically optimize an idealized model of cardiac anastomosis. Krishnamurthy

et al. (2013) hand-tuned a model of ventricular inflation with patient-specific geom-

etry to determine cardiac tissue material parameter inputs of a circulatory model. I

created an optimization framework to tune the parameters of biomechanics and cir-

culatory cardiac models based on patient-specific data, allowing physicians to more

broadly apply these models in a clinical setting.

2. A reliable optimization formulation to fit parameters of full cardiac-cycle

circulatory models

Most previous applications of optimization to circulatory model parameter fitting

have used a localized or gradient-based approach; however, derivative-free and heuris-

tic methods are more suitable for complex, multimodal models. Neal and Bassingth-

waighte (2007) used the Nelder-Mead Simplex algorithm (NMS) to tune two open-loop

models of hemorrhage in porcine subjects. Lim et al. (2010) applied NMS to explore

a lumped parameter model of an implantable rotary blood pump under various oper-

ating conditions. Ellwein et al. (2013) used the gradient-based LevenbergMarquardt

algorithm to fit a lumped-parameter model of congestive heart failure. I demonstrate

an efficient and reliable algorithm for optimizing full-cycle circulatory models that can

work for a wide variety of patients.
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3. A methodology suitable for treatment and study utilizing cross-species

models

Medical scientists commonly use animals to perform research more feasibly than could

be done with human patients (Leong et al., 2015). Different animal models are val-

ued for the study of specific aspects of cardiac function (Milani-Nejad and Janssen,

2014), necessitating the development of consistent study methodologies to compare

results. Most cross-species research has focused on the study of drug response in

living subjects; computerized biophysical models are a less mature field and are thus

still establishing best practices. I show that the proposed framework can be used to

consistently analyze models of both human patients and canine subjects, validating

its suitability for cross-species research.

4. A platform for uncertainty quantification (UQ) of patient-specific biophys-

ical models

Physicians cannot rely on models unless the error of a simulated result is quantified.

Analysis of parameter sensitivity can be used to obtain this information or provide a

more robust solution. These techniques are mature, but have not been widely applied

to patient-specific models. Sankaran et al. (2013) modeled the long-term adaptation of

blood vessels by robustly optimizing arterial wall properties of an idealized geometry

using SMF with a stochastic cost function. Probst et al. (2010) studied the sensitiv-

ity of idealized bypass geometry to blood viscosity inputs by computing derivatives

of geometric parameters. Huberts et al. (2018) propose a method to make uncertain

cardiovascular models more useful for diagnosis and intervention based largely on sen-

sitivity analysis. Sankaran and Marsden (2011) perform UQ for a variety of geometric

cardiovascular models using a stochastic collocation approach. I describe and test an

appropriate method of UQ for patient-specific biophysical models as a foundational

step towards quantifying the confidence in their results.
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This work facilitates the use of biomechanics and circulatory cardiac models by address-

ing the currently most challenging aspects of the process. Researchers will also be able to

build on this framework to compare data between cross-species models and further advance

medical understanding. Chapter 2 introduces the deterministic portion of the framework.

In Chapter 3, it is extended to include uncertainty quantification. Finally, Chapter 4 sum-

marizes results and limitations and highlights potential avenues of improvement.
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CHAPTER 2. OPTIMIZATION FRAMEWORK FOR

PATIENT-SPECIFIC CARDIAC MODELING

This paper is in review for Biomechanics and Modeling in Mechanobiology. It was

authored by Joshua Mineroff, Andrew D. McCulloch, David Krummen, Baskar Ganapa-

thysubramanian, Adarsh Krishnamurthy. I was responsible for developing, implementing,

and testing the framework as well as for writing the majority of the manuscript. Andrew and

David offered expertise on cardiovascular disease and treatment. Baskar contributed to the

methodological decisions pertaining to optimization. Adarsh helped create the methodology

and informed relevance to the field of cardiac modeling.

2.1 Abstract

Patient-specific models of the heart can be used to improve the diagnosis of cardiac

diseases, but practical application of these models can be impeded by the computational

costs and numerical uncertainties of fitting mechanistic models to clinical measurements

from individual patients. Reliable and efficient tuning of these models within clinically ap-

propriate error bounds is a requirement for practical deployment in the time-constrained

environment of the clinic. We developed an optimization framework to efficiently tune

parameters of patient-specific mechanistic models using routinely-acquired non-invasive pa-

tient data. We employ a hybrid particle swarm and pattern search optimization algorithm,

but the framework can be readily adapted to use other optimization algorithms. We apply

the proposed framework to tune full-cycle lumped parameter circulatory models using clin-

ical data obtained from patients who gave informed consent. We show that our framework
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can be easily adapted to optimize cross-species models by tuning the parameters of the

same circulation model to four canine subjects. Finally, to demonstrate the framework’s

extensibility to more sophisticated models, we use it to simultaneously obtain the unloaded

geometry and optimize the passive myocardial material parameters of four left-ventricular

cardiac finite element models constructed from canine subject MRI data. The simulated

end-diastolic pressure-volume relationships were optimized to match previously established

relationships from literature (Klotz et al., 2006); and were all within acceptable error tol-

erances. This work will facilitate the use of biomechanics and circulatory cardiac models

in both clinical and research environments by ameliorating the tedious process of manually

fitting the parameters.
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2.3 Introduction

Cardiovascular disease (CVD) has been the leading cause of death globally for the last

decade, causing roughly a third of all-cause deaths in 2013 (Roth et al., 2015). Efforts to

improve treatment efficiency, e.g. the development of appropriate use criteria for cardiovas-

cular technology (Hendel et al., 2013), have been hamstrung by limited adherence to clinical

best practices (Mehta et al., 2007) mainly due to the complicated nature of CVD, declines

in cardiac examination skills (Vukanovic-Criley et al., 2006), and reduced patient-physician

interaction time (Dugdale et al., 1999). As an example, only 66.5% of coronary artery dis-

ease patients received the optimal evidence-based combination of treatments during their

first visit in 2013 (Maddox et al., 2014). Suboptimal initial treatment increases effective

time-to-treatment, further contributing to CVD mortality rates (Nallamothu et al., 2015;

Ting et al., 2010). Patient-specific computer-based decision support systems offer an op-

portunity for improved treatment efficiency through better diagnosis based on mechanistic

models tuned to the individual patient.

Physical models have been a foundational category of computer-based medical decision

aids for at least 30 years (Shortliffe et al., 1979) and advances in algorithms and com-

puting power continue to improve the tractability of higher-fidelity analysis (Baillargeon

et al., 2014). Specifically, patient-specific computer-based decision support systems often

make use of commonly recorded medical data to assist clinical diagnosis or therapy plan-

ning. Graphical decision aids have also been found to improve comprehension when used

to supplement physician-patient discussions (Stacey et al., 2017; Hess et al., 2012; Arnold

et al., 2008). As an example, cardiac pressure-volume (P-V) loops are an effective tool for

the identification of cardiac pathologies, since cardiologists are trained to diagnose different

pathological conditions using them. P-V loops of the ventricular chambers are traditionally

unobtainable without catheterization, but computational mechanistic models can estimate

P-V loops of each chamber of the heart using only non-invasive measurements.
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Patient data is widely used for risk classification and forecasting of treatment outcomes

based on population statistics (Gaziano et al., 2005; Ferrario et al., 2005; Wilson et al.,

1998); patient-specific modeling is the process of using these data to individualize general

computational models to integrate clinical data and use prior physiological knowledge and

physicochemical constraints to make individualized predictions and decisions. However, the

deployment of complex patient-specific models is currently limited by the level of training

required to initialize and operate them. Individualizing a complex model for a wide variety

of patients is often hindered by gaps in available patient data, which necessitate the use

of empirical data or rules to tune model parameters. Reliable and efficient tuning of these

models is a requirement for deployment in the environment of a medical clinic, but the

manual tuning process can be imprecise and time-consuming.

In order to reduce the manual tuning required for patient-specific modeling, we pro-

pose an optimization-based framework to support the wider application of patient-specific

physical models to the treatment of CVD. Optimization bridges the gap between available

complex models and patient data by automating the fitting process and providing a con-

sistent, resource-efficient result. Manual tuning relies heavily on the user’s experience with

the model, and modeled system, to select appropriate parameters; this often leads to local

optima that are unnecessarily close to initially-assumed parameter values. Computerized

optimization can systematically search the feasible region more efficiently, often running

many evaluations in parallel, to find better solutions.

We test this framework using two examples: a left ventricular (LV) passive finite-element

model and a hemodynamic lumped-parameter circulation model. The FEA model is used

to determine the unloaded geometry and the cardiac tissue material parameters of four

canine subjects based on data made available from a previous benchmark study (Wang

et al., 2009). The circulation model is then used to personalize the hemodynamics of the

four canine subjects to generate P-V loops of the different chambers of the heart. The

framework is then used to determine the hemodynamic parameters of eight human patients
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using only limited non-invasive measurements. This demonstrates the broad applicability

of the proposed method in handling different mechanistic models in different species.

The main contributions of this work include the development of:

1. A framework to automatically tune biomechanics and circulatory cardiac models using

patient-specific data with minimal user intervention.

2. A robust optimization formulation to fit parameters of full cardiac-cycle circulatory

models, even with missing clinical data in certain patients.

3. A methodology that is applicable for different types of mechanistic models and enable

automatic tuning of cross-species models.

Our optimization framework can be used by researchers who can treat the mechanistic

models as a black-box. It will facilitate the use of biomechanics and circulatory cardiac mod-

els in both clinical and research environments by ameliorating the tedious and potentially

biased process of manually fitting the parameters.

2.4 Related Work

Recently, cardiovascular models have increased in complexity, allowing them to capture

the relevant physics more accurately. Highly sophisticated models exist for many biophysical

cardiac phenomena, (Niederer et al., 2009) and treatment options (Kerckhoffs et al., 2008).

These models require extensive patient data and are already being tested in clinical settings.

Smith et al. (2011) are developing one such example of a data driven-model for the optimal

application of treatment modalities.

Cardiovascular applications of optimization to biomechanics and circulatory models have

focused on shape optimization of cardiac geometry using idealized template meshes. How-

ever, improvements in optimization methodologies have not been widely applied specifically

to parameter estimation of these physics models. Marsden et al. (2008) used the surrogate

management framework (SMF) for shape optimization with a general biophysical model.
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Agoshkov et al. (2006) used an adjoint approach to geometrically optimize an idealized

model of cardiac anastomosis. Krishnamurthy et al. (2013) hand-tuned a model of ventric-

ular inflation with patient-specific geometry to determine cardiac tissue material parameter

inputs of a circulatory model.

Closed-loop circulatory models provide valuable insight into cardiac function. Early

circulatory models were limited to small sections of the cardiovascular system (Hardy et al.,

1982), but increases in computing power enabled the development of more complete models.

For example, Olansen et al. (2000) constructed an integrative model using reference values

to study the effects of small parameter perturbations. This model, and others like it,

were primarily valuable as a tool to develop and test general physiological principles. The

CircAdapt model consists of an idealized set of active components (i.e. tubes, chambers,

and valves) that are governed by empirical and patient-specific data (Arts et al., 2005).

Most previous applications of optimization to circulatory model parameter fitting have

used a localized or gradient-based approach; however, derivative-free and heuristic methods

are more suitable for complex, multi-modal models where gradient-evaluation is expen-

sive and there are many local optima that confuse the solver. Neal and Bassingthwaighte

(2007) used the Nelder-Mead Simplex algorithm (NMS) to tune two open-loop models

of hemorrhage in porcine subjects. Lim et al. (2010) applied NMS to explore a lumped

parameter model of an implantable rotary blood pump under various operating condi-

tions. Ellwein et al. (2013) used the gradient-based Levenberg-Marquardt algorithm to fit

a lumped-parameter model of congestive heart failure.

Medical science commonly uses animals to perform research more feasibly than could be

done with human patients (Leong et al., 2015). Different animal models are valued for the

study of specific aspects of cardiac function (Milani-Nejad and Janssen, 2014), necessitating

the development of consistent study methodologies to compare results. Most cross-species

research has focused on the study of drug response in living subjects; computerized bio-

physical models are a less mature field and are thus still establishing best practices.
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We created an optimization framework to tune the parameters of biomechanics and

circulatory cardiac models generated using patient-specific data, allowing physicians to more

broadly apply these models in a clinical setting. The burden of parameter tuning is reduced

by using adaptation rules to propagate changes through the model, making CircAdapt (Arts

et al., 2005) an especially tractable patient-specific model. We demonstrate an efficient and

reliable algorithm for optimizing full-cycle circulatory models and show that the proposed

framework can be used to consistently analyze models of both human patients and canine

subjects, validating its suitability for cross-species research.

2.5 Methods

2.5.1 Optimization framework

Our framework is designed to perform parameter optimization to tune patient-specific

computerized biophysical models to available data. The multi-modal, highly corrugated

nature of these models makes it difficult to compute gradients and favored a derivative-

free approach. We selected a hybrid particle swarm and pattern search solver to globally

search the parameter space and support parallel model evaluation. Since model analysis is

the primary computational expense for this class of problems, the potential overhead of a

higher-level software package is insignificant.

Particle swarm optimization (PSO) is a heuristic method using a population of candidate

solutions, referred to as particles (Shi and Eberhart, 1998). Initially, these particles are

distributed throughout the parameter space with a given location and ’velocity.’ A step

of the algorithm starts with the evaluation of the current parametric configuration of each

particle. Then, the velocities of each particle are updated as a function of (1) its current

velocity, (2) the best solution that it has found, and (3) the best solution any particle

has found. The algorithm continues until a termination criteria is met, usually when a set

number of iterations have passed without improving the objective value by a given tolerance.
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One of the primary benefits of PSO is its fast convergence in global search for traditionally

difficult problems, but it is an expensive method for computing precise optima.

Pattern search is a direct search method (DS) involving the use of a scalable pattern,

or mesh, to step through the parameter space from an initial location (Hooke and Jeeves,

1961). At each iteration, the mesh is centered at the current best point and parameter

values at the surrounding mesh points are evaluated. The specific mesh pattern used polls

a positive and negative perturbation of every parameter at each iteration. If an improvement

is found, the mesh is re-centered at the new location and expanded to minimize the chances

of convergence to a non-global minimum. If no improvement is found, the mesh is contracted

to more precisely identify the local optimum. DS methods are highly influenced by initially

assumed parameter values, but are one of the most efficient non-analytical methods for the

identification of a precise solution.

The full hybrid algorithm we employed first searches the solution space using PSO to

identify a likely global optima. The resulting solution was then used to initialize the DS

method to more efficiently find a precise optimum. It is generally impossible to prove that

the true global optimum has been identified for non-analytical multi-modal problems, but

in our experience, this approach converged to an acceptable result within the bounded

parameter space for a majority of the runs.

All optimization and analysis was run on a cluster with each node having two 2.6 GHz

8-Core Intel E5-2640 v3 processors and 128GB of RAM. The framework is implemented

in MATLAB (MathWorks, 2017), since it has multiple commercially-tested derivative-free

solvers and is capable of integrating with most models, and will be made available after

publication. The primary computational expense for the kind of optimization problems

studied in this paper are the many model evaluations required. Both optimization methods

used in our approach are well-suited to parallelization which can decrease the wall time

of the optimization by allowing a larger pool of computational resources to be used than

could be applied to a single evaluation. This is especially attractive with the increasing use
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of cloud computing. Parallelization was handled differently for each model and is further

explained in each section.

2.5.2 Clinical data

The eight human patients studied were male, aged (66± 11 years) with NYHA class III

heart failure, dilated cardiomyopathy, and left bundle branch block (LBBB) were enrolled

from the Veteran’s Administration San Diego Healthcare System (San Diego, CA). Patients

gave informed consent to participate in the human subject protocol approved by the insti-

tutional review board. Key cardiac measurements were recorded via echocardiogram and

routine diagnostic methods; pressure data from cardiac catheterization was also used for

validation.

The canine simulations used four normal dog data provided by the STACOM 2014

LV Mechanics Challenge (Camara et al., 2014). The data was acquired at the National

Institute of Health, USA in collaboration with Johns Hopkins University (Ennis, 2004)

using high resolution cines, tagging, and ex-vivo diffusion tensor imaging (DTI) (Wang et al.,

2009). Data acquisition was approved by local Institutional Review Boards and conducted

in accordance with the “Guide for the Care and Use of Laboratory Animals” (Institute

of Laboratory Animal Resources (ILAR), 1996). In-vivo left ventricular pressures were

also recorded during scanning. Dogs were paced from the right atrium. The processed

data included mesh point clouds and binary masks defining the LV geometry and muscle

fiber orientations derived from ex vivo diffusion tensor MRI. The geometries only reflect

the location of the epicardial and endocardial surfaces; they do not encode material point

displacements. The finite element geometry for the dog models were reconstructed using

the methods outlined in Krishnamurthy et al. (2015).
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Figure 2.1 The geometric parameters and objective metrics used in the circulatory opti-

mization. (A) A schematic of the CircAdapt model highlighting key geometric

dimensions of major model components. A subset of the model values directly

driven by patient-specific or reference data (Table 2.1) and the parameters used

(Table 2.3) are both shown. (B) A typical simulated left ventricular (LV) pres-

sure-volume loop showing all partial objective metrics. Pulm. = pulmonary

circulation; Syst. = systemic circulation; LA = left atrium; RA = right atrium;

RV = right ventricle; EDV = end-diastolic volume; EDP = end-diastolic pres-

sure.

2.5.3 Circulation model

CircAdapt (Arts et al., 2005) is a lumped-parameter model of the circulatory system

(Fig. 2.1) implemented in MATLAB. It can be used to model the pressure and volume of

the four chambers as a function of time for the complete cardiac cycle. We use CircAdapt

to perform a closed-loop simulation of the patient-specific cardiovascular system, incorpo-

rating up to 11 values of non-invasively obtained patient data, and output one simulated

cycle of blood flow. The potential data include heart rate and blood pressure, as well as

valve measurements that can be obtained through ECG or echocardiogram (Table 2.1).

Basic canine subject data was also used (Table 2.2). A subset of seven CircAdapt model

parameters were selected for tuning (Table 2.3).
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Table 2.2 Experimentally measured objectives for canine subjects studied in circulatory

optimization. All subject models relied largely on reference data. PmaxLV =

peak left-ventricular pressure; EDVLV = left-ventricular end-diastolic volume.

Subject PmaxLV EDVLV
(kPa) (mL)

S1 13.6 30.3

S2 12.3 20.5

S3 10.3 24.5

S4 11.3 19.6

Primary model fit was assessed as a function of the relationships of simulated peak

pressure (Pmax, Eq. 2.1) and end-diastolic volume (EDV, Eq. 2.2) to measured patient

values, with additional constraints that are enforced as penalties to the objective func-

tion. These penalties were based on (1) minimum LV pressure (Pmin: 0.5 kPa, Eq. 2.3),

(2) LV end-diastolic pressure (EDP: 2.5-4 kPa, Eq. 2.4), and (3) mitral regurgitant volume

(MRV, Eq. 2.5). The component weights of the objective function were selected to prior-

itize those with greater certainty and reduce those relying on assumptions from reference

data. The contribution of constraints on Pmin and EDP were minimized the most, as they

were not derived from patient data, while Pmax was weighted highly, as it was measured

most directly. Additionally, positive Pmax and EDV model error were penalized by a factor

of 2 to account for possible measurement overestimation (Piper et al., 2015; Lang et al.,

2006). If no MRV patient data was available, then a healthy reference value of 30 mL was

used as an upper bound; 3 mL was used for the canine subjects. Our framework could be

easily adapted to use other objective functions motivated by biomechanical principles or

physiology (e.g. Heusinkveld et al. (2009)).
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Table 2.3 Parameters and bounds of the different optimization variables in x of the circu-

lation model.

Variable Description Lower

Bound

Upper

Bound

Units Reference

kMAP Scaling of mean arterial pres-

sure initially calculated using

the ’33% formula’

0.8 1.2 - (Raamat et al.,

2013)

P∆pulm Blood pressure head loss across

the pulmonary system

0.5 1.5 kPa (Yoshimura

et al., 1993;

Nauser and

Stites, 2001)

Laorta Geometric scaling factor of ef-

fective length of aorta from Cir-

cAdapt reference configuration

0.5 1.5 -

Lpulm Geometric scaling factor of ef-

fective length of pulmonary

artery from CircAdapt reference

configuration

0.5 1.5 -

kLV Geometric scaling factor of left

ventricular midwall surface area

from CircAdapt reference con-

figuration

0.5 2 - (Clay et al.,

2006)

kRV rel Geometric scaling factor of right

ventricular midwall surface area

from CircAdapt reference con-

figuration relative to left ventri-

cle scaling

0.5 2 - (Kovalova et al.,

2006)

Sfact Maximum isometric active

stress of myofibers

25 200 kPa

Sfpas Passive stiffness of myofibers 10 30 kPa

Mleak Ratio of mitral valve leak area

to open area

1e-6 0.2 - (Zoghbi, 2016)
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yPmax(x) =



(
Pmax(x)−Pmaxdata

Pmaxdata

)2
,

if Pmax(x) ≤ Pmaxdata

2 ∗
(
Pmax(x)−Pmaxdata

Pmaxdata

)2
,

if Pmax(x) > Pmaxdata

(2.1)

yEDV (x) =



(
EDV (x)−EDVdata

EDVdata

)2
,

if EDV (x) ≤ EDVdata

2 ∗
(
EDV (x)−EDVdata

EDVdata

)2
,

if EDV (x) > EDVdata

(2.2)

gPmin(x) =

(
Pmin(x)− Pminref
Pmaxdata − Pminref

)2

,

if Pmin(x) > Pminref

(2.3)

gEDP (x) =



(
EDP (x)−EDPrefmin

Pmaxdata−Pminref

)2
,

if EDP (x) ≤ EDPrefmin(
EDP (x)−EDPrefmax

Pmaxdata−Pminref

)2
,

if EDP (x) > EDPrefmax

(2.4)

gMRV (x) =



(
MRV (x)−MRVdata

MRdata

)2
,

if MRVdata 6= ∅(
MRV (x)−MRVref

MRref

)2
,

if MRVdata = ∅

and MRV (x) > MRVref

(2.5)

The complete optimization formulation (Eq. 2.6) was used to generate CircAdapt models

for eight human patients and four canine subjects. This resulted in 45 (5N) evaluations for
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each PSO iteration and 18 (2N) iterations for each DS iteration. Each optimization was run

in a MATLAB environment on one 16-core node, allowing for 16 parallel single-threaded

evaluations. Repeated parameter configurations used the initial result for improved effi-

ciency.

arg min
x

(
0.8 ∗ yPmax(x) + 0.2 ∗ yEDV (x)

+ 0.75 ∗ gPmin(x) + 0.75 ∗ gEDP (x)

+ 0.15 ∗ gMRV (x)

)
s.t. E(P (x), V (x)) = 0, (ODE Solution),

Ax ≤ b, (Bounds on x)

(2.6)

2.5.4 Finite-element model

We use a finite-element model of the canine left ventricle to determine its unloaded

state and personalized material parameters of the cardiac tissue. An analysis-suitable left

ventricular mesh is constructed from an MRI scan of the subject or patient heart at end-

diastole. However, since this mesh is measured at the loaded state, an unloaded mesh state

needs to be determined along with the properties of the passive Ogden-Holzapfel material

model (Holzapfel and Ogden, 2009).

The unloaded mesh is obtained through an iterative inflation-deflation process. We first

assume an initial unloaded geometry state that is identical to the MRI mesh, and passively

inflate it to the measured EDP. Then the deformation gradient between the loaded and

MRI mesh is inversely applied to the unloaded geometry. This process is repeated until the

interior volume of the loaded mesh and MRI mesh converge to within 3% (Krishnamurthy

et al., 2016).

ψ =
a

2b
eb(I1−3) +

∑
i=f,s

ai
2bi

(ebi(I4i−1) − 1) +
afs
2bfs

(ebfsI
2
8fs − 1) (2.7)
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Table 2.4 Parameters and bounds of coefficients of x in Eq. 2.9

a af b bf
(kPa) (kPa) - -

Upper Bound 50 50 50 50

Reference 1.5 15 8 15

Lower Bound 0.01 0.01 0.01 0.01

Four material model parameters (a, b, af , and bf , Table 2.4) are used to represent

patient-specific material properties in a simplified form of the Ogden-Holzapfel strain en-

ergy function (Eq. 2.7). Correctness of the material parameters is determined by the con-

formation of the resulting inflated ventricle to the reference end-diastolic pressure-volume

relationship (EPDVR) described by Klotz et al. (2006). This method uses the sole original

end-diastolic pressure (EDP) and volume (EDV) data point to describe the entire EDPVR

as a function (Eq. 2.8) with patient-specific values α and β. The least squares error is then

calculated between this curve and the complete set of data captured during the simulated

inflation (Fig. 2.2). The optimized material parameter values are those that minimize this

error (Eq. 2.9). We used four meshes generated from canine subjects to demonstrate the

approach.

EDPi = α ∗ EDV β
i (2.8)

arg min
x

n∑
i=1

(Pi(x)− α(x)EDVi(x)β(x))2

s.t. E(V (x)) = 0, (PDE Solution),

Ax ≤ b, (Bounds on x)

(2.9)

Evaluation of this model is significantly more expensive than the circulation model,

and is therefore optimized using only the more computationally efficient DS portion of the

optimization framework. This shows how the exact implementation of the framework can

be easily adapted to different problems. The MATLAB-based DS optimization framework
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generated eight (2N) parameter configurations for each mesh iteration of the optimization

algorithm. The evaluation of these was handled via a queue managed by GNU Paral-

lel (Tange, 2011) to run up to eight evaluations in parallel across four nodes. A bash script

was used to control the inflation/deflation cycle until the model had converged. Each simu-

lation was performed using Continuity 6.4 (CMRG, 2015), a Python-based multi-scale FEA

and modeling tool developed by the UCSD Cardiac Mechanics Research Group, in parallel

across eight cores. This approach is highly scalable with a minimal amount of overhead.

2.6 Results

2.6.1 Circulation model results

Patient-specific circulatory models were tuned for the eight human subjects using Cir-

cAdapt with the presented optimization framework to determine parameter values (Ta-

ble 2.5). The pressure error for the eight patients had a max of 0.53% and a mean of 0.15%.
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Volume error had a max of 6.71% and a mean of 1.26%. Only the models for patients A

and E exceeded the reference minimum pressure value of 1 kPa, with patient E having the

highest value of 1.18 kPa, but all models had acceptable EDP values within 18% of the 2.5

kPa reference value. Mitral regurgitant volume was within 1.3 mL of the measured value

for two of the patients where that data was available (B and D), and within the (< 30

mL) healthy range for patients that did not have that data. The low measured regurgitant

volume (5 mL) of patient E was not able to be satisfied, contributing significantly (30%) to

the objective value.

The tuned models for patients A and E had significantly higher optimized objective

values than the other six patients (0.21e-3 and 1.23e-3 respectively, compared to the overall

median of 6.4e-8), primarily from EDV error. The model for patient F was the best op-

timization result, with an objective value of 6e-9. Parameter values were not consistently

bounded and were typically distributed through the allowable range. None of the left ven-

tricular P-V loops from each of the tuned models (Fig. 2.3) have any obvious artifacts that

would signify errors in CircAdapt model convergence.

CircAdapt models were also tuned for four canine subjects (Table 2.5), generating a

set of P-V loops (Fig. 2.4). The objective values for these models were higher on average

than the human patients (1.95e-3 vs. 1.8e-4). The primary source of errors varied across

subjects, with S1 being most affected by Pmax and S3 being most affected by EDP and

Pmin.

The average time to solution was 29 hrs, with a range of 25-40 hrs. The average num-

ber of model evaluations was 3875, ranging from 2257 to 5454; 8% of these were repeat

configurations which used the previously logged result for efficiency.

Both sets of circulatory results were validated by calculating the root-mean-square error

(RMSE) between the simulated pressure curves and the left ventricular catheter data that

was available for the eight patients. The result highlights a potential downside of only using

non-invasive measurements, because systolic cuff pressure data for the studied patients
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Figure 2.3 Left ventricular pressure-volume loops for the eight human patients.

0 20 40

Volume (mL)

0

5

10

15

20

P
re

ss
ur

e 
(k

P
a)

S1

0 20 40

Volume (mL)

0

5

10

15

20
S2

0 20 40

Volume (mL)

0

5

10

15

20
S3

0 20 40

Volume (mL)

0

5

10

15

20
S4

Figure 2.4 Left ventricular pressure-volume loops for the four canine subjects.
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Figure 2.5 Validation of the simulated left ventricular pressure curves for the eight human

patients with catheter data after optimizing based on the peak catheter pres-

sure. Gray lines show cuff measurement systolic and diastolic pressures - only

catheter pressure was available as the reference for Patient H.

differed from peak left ventricular catheter pressure by an average of 41%. Substituting

the LV catheter pressure for cuff pressure as the optimization input reduced RMSE by

an average of 31%; patient E error decreased by 69% (Figure 2.5). It must be noted

that catheter measurements are not routinely performed on heart failure patients. We tried

several different approaches to get an effective simulated pressure time-course in the absence

of reliable, invasive pressure data; we discuss these approaches in detail in the Supplement.

The approach that gave the best result was to optimize the patients using the cuff systolic

pressure first and then replacing the MAP and Sfact for all patients with an average value

(Figure 2.6). This method reduced the RMSE error for most patients except for patient G

and H (Table 2.6).

Since cuff pressure was not available for the canine subjects, catheter data was used as

a direct optimization input. This led to a lower average RMSE than for the non-invasive
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Figure 2.6 Validation of the simulated left ventricular pressure curves for the eight human

patients with catheter data after tuning the optimized results with the average

MAP and Sfact. Gray lines show cuff measurement systolic and diastolic

pressures - only catheter pressure was available as the reference for Patient H.
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Table 2.6 RMSE between both human and canine model and catheter data when either

cuff (with or without using the mean values of MAP and Sfact) or catheter

pressure is used as an optimization input.

Subject/ Cuff Mean Cath

Patient (kPa) (kPa) (kPa)

A 4.07 2.90 2.41

B 2.66 2.57 2.75

C 2.85 2.53 2.78

D 4.59 4.08 3.28

E 3.11 1.53 0.97

F 3.48 3.29 1.43

G 2.79 4.44 1.39

H 1.42 1.55 1.42

S1 - - 1.30

S2 - - 1.41

S3 - - 1.11

S4 - - 2.72

human patient results (1.6 kPa vs. 3.12 kPa, Fig. 2.7). One of the largest contributors to

the calculated RMSE values was inaccuracy in the total time of cardiac tissue activation.

This value was not a parameter in the optimization, since there was no available patient

data to evaluate it against, and thus remained at the typical reference value. Table 2.6

shows the RMSE values for each subject and each patient when optimized with cuff and

catheter pressure.

2.6.2 Finite-element model results

Material properties for four canine subjects were fitted using a left-ventricular passive

inflation simulation in Continuity (Table 2.7). The optimized values for all subjects were

notably dissimilar from the reference values. S1 had much different values than the other

subjects, likely caused by its significantly greater chamber volume. The average least squares

error was 0.21, ranging from 0.09 to 0.30. Figure 2.8 shows the resulting unloaded meshes

and EDPVR curves for all four subjects.
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Figure 2.8 Results from simulated inflations of four canine left ventricles. (A) The final

unloaded meshes. (B) Comparison of the optimized simulated pressure-volume

curves to the Klotz curves (Klotz et al., 2006).

The largest impediment to fit was the allowed EDV convergence error for the estimation

of the undeformed ventricle geometry. The average solution took 76 hrs with 1277 eval-

uations, each requiring 2-3 inflation deflation iterations; however the number of required

unique evaluations varied widely between 374 and 3092, with repeat configurations used the

previously logged result for efficiency.

Table 2.7 Optimized coefficients from Eq. 2.9 and Klotz curve (Klotz et al., 2006) fit for

each canine subject.

Subject a af b bf Objective

(kPa) (kPa) - - -

ref 1.5 15 8 15 -

S1 1.6 5.1 7.3 4.5 0.30

S2 0.1 11.1 4 14.3 0.22

S3 0.3 6.8 4.3 12.7 0.09

S4 0.4 4.8 4.5 43.5 0.21
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2.7 Discussion

Our results showed that the proposed optimization-based tuning framework avoids many

of the issues inherent to manual tuning. Circulatory and finite-element models were tuned

for individuals with widely-varied parameters, but acceptable solutions were found for all

of them. It would be very time-consuming and tedious to manually tune these models from

a standard set of assumed parameter values in each case without considerable experience.

In addition, the manual process does not ensure repeatability of the parameter results.

Evaluation of the manual tuning performed by Krishnamurthy et al. (2013) on CircAdapt

models of the same patients used in this study resulted in an average objective of 2.42e-3,

97% higher than even the worst result from our method; pressure was the largest error

contributor. In addition, the manual process was significantly slower, with each patient

requiring up to 3 to 4 days of manual tuning. Our optimized parameter values were also

very different between individuals, suggesting that immediate local optima were avoided.

We showed how the adaptation of idealized reference values to patient-specific data can be

seamlessly integrated, thereby allowing for missing data.

One of the main insights that we obtained during implementation of the framework

is that the objective function for the circulation model optimization had to be carefully

selected. Just including Pmax and EDV alone as part of the objective function were not

enough to obtain consistent optimization results. Without the addition of the other penal-

ties, primarily from reference values, the resulting P-V loops were highly unrealistic in both

shape and position. We also found that an appropriate QRS duration value was vital to

avoid model artifacts caused by incorrect fill timing. In support of our hybrid global ap-

proach, early searches for local CircAdapt solutions produced unusable results; this shows

that some of the previous methods in the literature, such as NMS and Levenberg-Marquardt,

may not be appropriate for certain patient-specific parameters in our optimization. Gen-

erally, local optimizers that are heavily influenced by initial assumptions offer improved

convergence and precision; however, they can also increase the likelihood of issues due to
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sensitive parameters common in PSM which can easily be initialized in a non-global basin-

of-attraction. We were also surprised that the optimized canine material parameters in the

FEA model all converged to apparently reasonable values with the initially-assumed loose

bounds, suggesting that it is possibly a convex problem or that typical material parameters

give relatively good results for a wide variety of individuals.

Though the proposed framework addressed many of the issues currently impeding the

use of patient-specific cardiovascular models, there are still some key limitations to its

application. The first is that the use of noninvasive data imposes limitations on accuracy and

data acquisition. However, requiring invasive procedures reduces the value of the framework

as compared to more traditional explorative methodologies. The most efficient response is

to determine the data sources which are most sensitive and justify the most effort to capture

accurately. In the circulatory optimization, kMAP , Sfact, and kLV were the most sensitive

parameters; all had mean-normalized standard deviations less than half the value of any

other parameter. The values of these parameters are strongly correlated with Pmax and

EDV , which is not surprising as those metrics were most heavily weighted in the objective,

meaning that the accuracy of those reference measurements will have a large effect on the

results of the optimization.

We found that non-invasive measures of Pmax were especially unreliable, and this has

also been documented in the literature (Raamat et al., 2013). Obtaining pressure through

catheterization is currently ideal for data reliability, but improvements in non-invasive mea-

surement methods are necessary to enable the broader application of PSM. Along with the

approach of averaging MAP and Sfact discussed in the Results section, we also tried using

diastolic cuff pressure as a reference for aortic diastolic pressure. However, none of these

methods had a lower RMSE compared to the catheterized pressure measurements. These

results can be found in the Supplemental section.

Another limitation is that it is generally impossible to prove that a global optimum has

been found for non-convex non-analytical problems, so there is always the potential for a
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slightly better tuned result. It is also still necessary that an appropriate objective function

be manually constructed to evaluate model fit, which can often be surprisingly difficult.

This problem decreases in significance as the specific application of a model becomes more

widespread; in such cases a ”state-of-the-art” objective function and parameter bounds can

be shared among researchers and clinicians without requiring local expertise.

In summary, this framework can facilitate the widespread use of patient-specific or

subject-specific models by enabling tuning from non-invasive data. The optimization meth-

ods employed are resource efficient and easily scalable to the needs and computational

capacity of the application. Using an optimization framework, the information learned in

the medical community can be easily and reliably distributed, making it relatively easy to

tune a new patient model in a clinical environment compared with current manual meth-

ods. Finally, the framework is also usable in a research setting, where a major concern

in cross-species research is maintaining a consistent protocol. By tuning both human and

canine circulatory models with no modifications to the implementation besides reference

parameter values we demonstrate that this concern can be naturally addressed. This work

can be used in cross-species research and contribute to improved treatment of CVD.
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2.9 Appendix: Supplemental Methods and Validation

Performance of the circulatory model optimization was highly dependent on the quality

of the patient-specific pressure data. In the absence of reliable pressure data, we tried

different methods that can be used to still obtain a patient-specific pressure time-course.

This section outlines three other methods with corresponding validation plots comparing

their results with catheter data - the highest quality data available. Table 2.8 contains the

RMSE between the model and catheter data for all approaches.

The original method discussed in the paper uses systolic cuff pressure as a target value

for simulated peak LV pressure. Though the resulting pressure errors were within 0.53% of

the reference cuff pressure, a more fundamental issue was identified regarding the limitations

of cuff pressure accuracy. Figure 2.9 shows the resulting model LV pressure curves of the

initial optimization formulation validated against experimentally-obtained catheter data.

The peak pressure values differ significantly, leading to a high average RMSE of 3.12 kPa.

To minimize the variance in cuff pressure readings, we used the average optimized values

of MAP and Sfact - the two parameters with the strongest effect on Pmax - for all patients.

That result can be seen in the paper (Fig. 2.6).

Another approach we investigated was to use cuff diastolic pressure as the reference

value for simulated aortic diastolic pressure, instead of optimizing for peak LV pressure; the

form of the objective formulation was unchanged. The result can be seen in Figure 2.10.

This approach improved some patient models (C and G) and negatively impacted others
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Table 2.8 RMSE between human model and catheter data when either cuff (with or with-

out using the mean values of MAP and Sfact in x) or catheter pressure is used as

an optimization input and when modeled aortic diastolic pressure is optimized

against cuff diastolic pressure.

Patient Cuff Mean Aorta Cath

(kPa) (kPa) (kPa) (kPa)

A 4.07 2.90 5.59 2.41

B 2.66 2.57 2.97 2.75

C 2.85 2.53 2.49 2.78

D 4.59 4.08 6.07 3.28

E 3.11 1.53 3.66 0.97

F 3.48 3.29 6.02 1.43

G 2.79 4.44 1.97 1.39

H 1.42 1.55 1.42 1.42

(e.g. A and F), but increased average RMSE by 21%. This implies that diastolic cuff

pressure is no more reliable of a measurement than systolic cuff pressure.

Finally, we performed the optimization using the LV catheter data directly as a refer-

ence for peak LV pressure. In Figure 2.5, it can be seen that the model and optimization

framework are capable of generating realistic and accurate LV pressure curves given a re-

liable value for peak pressure. Improvements to non-invasive blood pressure measurement

techniques are needed to ensure results of this quality.
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Figure 2.9 Validation of the simulated left ventricular pressure curves optimized using

systolic cuff pressure for the eight human patients with catheter data. Gray

lines show cuff measurement systolic and diastolic pressures - only catheter

pressure was available as the reference for Patient H.
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Figure 2.10 Validation of the simulated left ventricular pressure curves for the eight hu-

man patients with catheter data after optimizing with measured diastolic cuff

pressure as a reference for aortic diastolic pressure. Gray lines show cuff mea-

surement systolic and diastolic pressures - only catheter pressure was available

as the reference for Patient H.
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CHAPTER 3. OPTIMIZATION FRAMEWORK FOR

PATIENT-SPECIFIC MODELING UNDER UNCERTAINTY

This paper is in review for The International Journal for Numerical Methods in Biomed-

ical Engineering. It was authored by Joshua Mineroff, Balaji Sesha Sarath Pokuri, Adarsh

Krishnamurthy, and Baskar Ganapathysubramanian. I was responsible for developing, im-

plementing, and testing the sampling and optimization framework as well as for writing the

majority of the manuscript. Balaji contributed the surrogate generation code and most of

the matching section of the paper. Adarsh informed the scope of the paper and supported

relevance to the field of cardiac modeling. Baskar helped create the approach and advised

on methodological decisions.

3.1 Abstract

Tuning of computerized models relies on data that is often unreliable and ill-suited

to a deterministic approach. We develop an optimization-based uncertainty quantification

framework for probabilistic model tuning that discovers distributions of model inputs which

generate target output distributions. Probabilistic sampling is performed using a model

surrogate for computational efficiency and a general distribution parameterization is used

to describe each input. The approach is tested on four patient-specific modeling examples

using CircAdapt, a cardiac circulatory model. Three examples are synthetic, aiming to

match the output distributions generated using known reference input data distributions,

while the fourth example uses real-world patient data for the output distributions. Our

results demonstrate accurate reproduction of the target output distributions, with accurate
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recreation reference inputs for the three synthetic examples. Although further testing is

needed to prove generalizability of the method, it appears suitable for the tuning of models

with uncertain data.

3.2 Acknowledgements
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by NSF grant 1750865 (Krishnamurthy), and by the Joseph C. and Elizabeth A. Anderlik
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to Dr. Judy Vance at Iowa State University for her extraordinary support.

3.3 Introduction

Computational models can be used to more efficiently and thoroughly understand a

complex system than experiments at reduced cost. While many aspects of these simulations

are idealized or analytically formulated, certain components require manual or automated

tuning of model parameters to accurately capture the modeled system. The values of these

parameters are often determined using experimental or reference data, either directly or

indirectly via dependent model values. However, available data is often unreliable; this

uncertainty impedes consistent tuning and must be accounted for to fully determine the

accuracy and validity of a result.

There are many ways to control or understand variability, but methods can be broadly

divided into the categories of validation and analysis. Validation uses reliable data, extrinsic

to the model, to test for model correctness. This can provide exact accuracy measurements,

but redundant experimental data may not be available and the need for experimental data

negates a key benefit of physically-representative models. Sensitivity and uncertainty anal-

ysis aim to characterize the variability of a model intrinsically, and a comparison of these

mathematical methods was performed by Iman and Helton (1988). Sensitivity analysis

looks at the effect of each individual variable on the model to determine which parameters
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are most important, which helps to focus data collection to where it will be most valuable.

Uncertainty analysis, or uncertainty quantification (UQ), is the direct characterization of

model uncertainty resulting from uncertain inputs. Instead of obtaining a model output and

judging its accuracy, UQ provides a range of possible output values with the distribution

of their occurrence. Walker et al. (2003) investigated the conceptual integration of uncer-

tainty into models intended for decision support to help the user make informed choices.

Mathematical methods of UQ are not especially new, but the transition to domain-specific

application has been slow.

One growing application of uncertainty classification in models is the use of patient-

specific modeling (PSM) in the study and practice of medicine. PSM is the use of patient-

specific data to individualize biomedical models. Information derived from such models can

inform medical interventions by providing clinicians with more accurate and comprehensive

diagnostic information as well as the predicted effects of different treatment modalities (Neal

and Kerckhoffs, 2009); it also introduces the potential to automate aspects of clinical de-

cision making, improving treatment consistency. Computational PSM continues to rise in

importance as the understanding of diseases and availability of diagnostic and treatment

options becomes more complex, and practicing physicians have to rely more on specialists

outside their area of expertise (Shortliffe et al., 1979). Additionally, a significant level of

training is currently required to initialize and operate them. Models used for PSM continue

to increase in complexity, magnifying uncertainties in model inputs. However, tuning ap-

proaches are often still deterministic and do not account for this variability (Krishnamurthy

et al., 2013; Ellwein et al., 2013; Reinbolt et al., 2008).

Treatment of cardiovascular disease (CVD), the leading cause of death in developed

countries (Roth et al., 2015), can significantly benefit from PSM and some such models are

already being tested in clinical settings (Niederer et al., 2009; Kerckhoffs et al., 2008). The

highly sophisticated models needed for patient-specific cardiovascular modeling rely on a

large number of uncertain data and can be expensive to validate. UQ has been applied
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to cardiovascular model tuning, though there is still no standard approach. Huberts et al.

(2018) propose a method to make uncertain cardiovascular models more useful for diag-

nosis and intervention based largely on sensitivity analysis. Sankaran and Marsden (2011)

perform UQ for a variety of geometric cardiovascular models using a stochastic collocation

approach. Xiu and Sherwin (2007) used a generalized polynomial chaos expansion method

for UQ in a 1D model. Further deployment depends on the development of efficient and

consistent model tuning methodologies.

We propose a general framework for probabilistic model tuning with uncertainty quan-

tification and test it using a cardiovascular circulatory model, CircAdapt (Arts et al., 2005).

The CircAdapt model is used to find input parameter distributions such that expected model

output distributions match those of experimentally measured non-invasive patient-specific

data. Parameterization of model variable distributions is done without any assumptions

of the form of those distributions. Since CircAdapt is a deterministic model, probabilistic

sampling of the model inputs was needed to get a distribution of outputs. To make the

necessary volume of evaluations computationally tractable, a surrogate model was built

using the PARyOpt framework (Pokuri et al., 2018). The combination of these techniques

supports accurate, efficient uncertainty analysis of expensive models.

The main contributions of this work include the development of:

1. An optimization framework for uncertainty quantification of model parameters.

2. A methodology for the estimation of uncertain patient-specific biophysical model pa-

rameters.

3. An efficient implementation of input distribution parameterization using deterministic

surrogates.
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Figure 3.1 A flowchart of the Design Under Uncertainty (DUU) framework.

3.4 Framework for Design Under Uncertainty

Inverse models are tuned by determining model input parameters such that model out-

puts match with available data. The error inherent in this data mean that a deterministic

approach is not ideal. Our Design Under Uncertainty framework (DUU, Fig. 3.1) is de-

signed to tune computerized models using uncertain data and builds on the methodology

developed by Mineroff et al. (2018). Specifically, the goal of the framework is to determine

the distribution of model inputs that match expected model output distributions. The

primary components of the framework are the probabilistic sampling method, the efficient

surrogate, the optimizer, and the original model.

3.4.1 Probabilistic parameterization and sampling

Probabilistic variables require more parameters to fully characterize than deterministic

variables. This necessitates the selection and development of an appropriate distribution

to accurately parameterize a probabilistic variable. Certain distributions can be described

with as few as two parameters per variable, e.g. mean and standard deviation for a normal

distribution; however, there are many different probability distributions used to describe
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uncertainty, even in the limited case of patient data (Gordon et al., 1983; Kuikka et al.,

1974). General parameterization schemas allow for any of these distributions to be discov-

ered when tuning the model. The proposed framework describes the distribution of each

model variable with parameter values representing probabilistically-uniform variable values

on the CDF. This approach supports a wide range of distributions, including deterministic

variables, and trivial parameterization refinement for more sensitive variables. Since p = 0

and p = 1 correspond with the values that are probabilistically guaranteed to be the lower

or upper bound of x they tend to attract towards negative and positive infinity, respectively.

To avoid this, we confine our representation and sampling of the CDF between p = 0.01

and p = 0.99.

There are a few ways to implement the proposed distribution parameterization for a

model variable x. The most straightforward method is to have N parameters that directly

represent the values of x at evenly spaced probabilities on the CDF. To ensure a valid

solution, each xn is bounded by the same bounds as x and N − 1 constraints are required

to ensure that the resulting CDF is monotonic. Another approach is for x1 to directly

represent the lower bound of the distribution, while all subsequent parameters represent

the increase in x over a given probability interval. If all parameters starting with x2 are

bounded to be positive, this decreases the required number of constraints per variable to 1

which ensures that the sum of all parameters representing x satisfies the upper bound of the

model parameter. Both of these approaches can be effective, but the need for constraints

makes them more expensive.

Our approach adds an extra parameter to the description of each model variable to

remove the requirement for constraints. In this approach, x1 represents the value corre-

sponding to p = 0.01. An additional N−1 parameters, bounded between 0 and 1, represent

the relative sizes of increments between x1 and xN . An additional parameter, bounded

between 0 and 1, scales the length between x1 and the upper bound of x. A value of 0 for

this parameter means that xN = x1, while a value of 1 means that xN equals the upper
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Figure 3.2 A representative example of a tuned model. (A) Parameterization of an input

variable distribution, where n = 5. (B) Error fitting of the simulated result

with a reference CDF.

bound of x. A representation of this parameterization is shown in (Fig. 3.2A). This allows

an potential distribution of x to be represented without the need for constraints.

Since many models are deterministic, there is often no way to directly evaluate a prob-

abilistic variable. This necessitates the sampling of deterministic variable values from the

described distribution. By Borel’s law of large numbers, a large number of samples eval-

uated in this way will generate an accurate output distribution. The parameterization

previously described has the benefit that arbitrarily accurate probabilistic sampling can be

performed cheaply by evaluating model values located probabilistically-uniformly along the

CDF. Multiple probabilistic inputs can be sampled in this way, but must be combined in

a way that avoids false correlation effects. We take the tensor product of the samples for

each input to get a complete set of samples, which assumes that the variables are mutually

independent.
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3.4.2 Surrogate modeling

Probabilistic models are generally represented in terms of a non-parameterized CDF

developed through multiple evaluations using probabilistically represented variables. This

complexity means that probabilistic model evaluation is significantly more expensive than

that of the same deterministic model. Additionally, each previously deterministic variable

now requires multiple parameters for a probabilistic representation – if 20 parameters are

used to represent each input distribution, then optimization of a 3 parameter deterministic

model expands to a 60 parameter problem. Thus methods need to be devised to reduce the

total number of resource-intensive cost function evaluations.

There are several methods available to tackle such high-dimensionality optimization

problems. A common technique (Leifsson et al., 2014; Robinson et al., 2008) is to consider a

reduced-order model representation for global optimization, which can substantially reduce

total optimization cost as the reduced-order cost function is cheaper to evaluate than the

original. However, this introduces a potential limitation – when reduced-order models do

not exist or have very low fidelity, the high-fidelity optimization is required. Therefore, to

take advantage of this technique and ensure broad applicability of the proposed framework,

a generalized method is needed to construct a cheap, reduced-order “meta-model” which

captures the response surface of the cost function.

There are several techniques to create a meta-model; the most common being interpola-

tion with varying degrees of continuity – this includes splines (Friedman, 1991), polynomial

interpolation (De Boor and Ron, 1990), and finally Gaussian processes (Dyn et al., 1986;

Fang and Horstemeyer, 2006). In this work, we use Gaussian process modeling to effi-

ciently build the reduced-order surrogate. It should be noted that an efficient meta-model

also implies efficient sampling when constructing the meta-model, not just efficient polling.

Gaussian processes, like radial basis function based Kriging (Cressie, 1988), offer this ad-

vantage over other techniques by providing a natural way to quantify informativeness of

different input configurations. Secondly, Gaussian processes absorb all data locations with-
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out over-fitting, so the generated surrogate will be an interpolant rather than a regression,

preserving the original cost function evaluations.

In this work, we use Kriging to create a meta-model of the cost-function. Kriging is

a general interpolation technique based on Gaussian priors and posteriors on functionals

aimed at approximating a, typically expensive, ‘oracle’ function. The approximate function

is described in terms of the mean and variance of distribution of the functions. Based on this

description, an informativeness metric is defined, commonly called the acquisition function;

locations with maximum information addition have a large value of acquisition function and

vice-versa. The ‘oracle’ function is then evaluated at these extrema of acquisition function

and the values are used to construct a posterior distribution. Mathematically, the algorithm

can be described as follows:

The surrogate/meta-model is constructed in the form:

ỹ(x) =
∑

i=1,2,..N

wi k(xi,x) (3.1)

where k(xi,x) is a kernel function. The constructed meta-model (mean µ and variance

σ), after N function evaluations is given by

µ(xN+1) = kTK−1y1:N (3.2)

σ2(xN+1) = k(xN+1,xN+1)− kT K−1 k (3.3)

where

K w̄ = y (3.4)

Ki,j = k(xi,xj), i, j ∈ [1, N ] (3.5)

yi = y(xi), i ∈ [1, N ] (3.6)

w̄ = {wi}, i ∈ [1, N ] (3.7)
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and

k = k(xN+1) = [k(x1,xN+1) k(x2,xN+1) ...k(xN ,xN+1)] (3.8)

To perform the above tasks, we use an in-house software, PARyOpt (Pokuri et al.,

2018), which performs parallel cost function evaluations asynchronously, enabling multiple

simultaneous function evaluations and can be deployed locally or on a HPC cluster, with

resilience to hardware failures. It is fully modular and ‘oracle’ function agnostic and it can

deal with ‘oracle’ failures – i.e., if the simulation is infeasible at a particular location, it can

still assimilate that location with an explicit ‘tag-of-failure’ associated with the infeasible

point. This feature of assimilating failed points is particularly handy when infeasibility of

evaluation locations cannot be estimated a priori.

3.4.3 Optimization framework

Complex models of real-world systems tend to be multi-modal and highly corrugated.

This, combined with the probabilistic model sampling necessary in each evaluation, makes

the calculation of gradients intractable and supports a derivative-free approach. We employ

a two-step approach; first using particle swarm optimization to perform a global search

of the problem space, and finally using pattern search to converge to a precise local op-

tima. The optimization and surrogate sampling for each evaluation is performed using

MATLAB (MathWorks, 2017). This methodology and implementation is efficient enough

to make local model tuning on a consumer laptop feasible.

The correctness of each model output is calculated using the RMS error between the

simulated output inverse-CDF (iCDF) and the predetermined target output iCDF, defined

using a combination of patient and reference data (Fig. 3.2B). Since models are often tuned

using more than one piece of output data as a target, the objective function needs to allows

for the consideration of multiple model output distributions. The selected optimization

formulation (Eq. 3.9) supports this by using a linear combination of the output RMS errors.
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arg min
x

N∑
n=1

an

√√√√ 1

M

M∑
m=1

(CDFmn(x)− rCDFmn)

s.t. E(fn(x)) = 0, for all n (*Surrogate of ODE solution),

Ax ≤ b (Bounds on x)

(3.9)

*Note that surrogate accuracy is actually better than an expected value of 0. Pointwise

the kriged model is exactly correct at the location, and within some region, of sampled

points.

3.5 Circulatory Model

3.5.1 CircAdapt

CircAdapt (Arts et al., 2005) is a lumped-parameter model of the circulatory system

(Fig. 3.3) implemented in MATLAB. It provides detailed information on hemodynamic

properties within the heart at any time during the cardiac cycle. We consider the model

variables and outputs identified as most important by Mineroff et al. (2018) (Table 3.1)

along with select patient data.

Table 3.1 Details and bounds of the different CircAdapt variables affected by x.

Variable Description Lower

Bound

Upper

Bound

Units Reference

kMAP Scaling of mean arterial pres-

sure initially calculated using

the ’33% formula’

0.8 1.2 - (Raamat et al.,

2013)

kLV Geometric scaling factor of left

ventricular midwall surface area

from CircAdapt reference con-

figuration

0.5 2 - (Clay et al.,

2006)

Sfact Maximum isometric active

stress of myofibers

25 200 kPa

Sfpas Passive stiffness of myofibers 10 30 kPa
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Figure 3.3 A schematic, showing geometric parameters, and output P-V loop, showing

the deterministic metrics, of the CircAdapt model. (A) A schematic of the

CircAdapt model highlighting key geometric dimensions of major model com-

ponents. (B) A typical simulated left ventricular (LV) pressure-volume loop

showing both metrics. Pulm. = pulmonary circulation; Syst. = systemic cir-

culation; LA = left atrium; RA = right atrium; RV = right ventricle; EDV =

end-diastolic volume.

3.5.2 Clinical data

The human patient studied was male, aged (approximately 66 years) with NYHA class

III heart failure, dilated cardiomyopathy, and left bundle branch block (LBBB) and enrolled

from the Veteran’s Administration San Diego Healthcare System (San Diego, CA). Patient

gave informed consent to participate in the human subject protocol approved by the insti-

tutional review board. Key cardiac measurements were recorded via echocardiogram and

routine diagnostic methods.
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Table 3.2 Summary of synthetic examples. In Example 2, the bolded distribution of input

X2 is known by the optimizer.

Example Unknowns Knowns X1 X2 Output 1 Output 2

1 1 0 kMAP - PmaxLV -

2 1 1 kMAP Sfact PmaxLV -

3 2 0 kMAP kLV PmaxLV EDVLV

3.6 Synthetic Examples

Before using the proposed framework to solve a real problem, it is tested with some syn-

thetic examples where the input distribution is known a priori. Starting with the reference

CircAdapt model configuration, we assume an input distribution or set of distributions and

run a forward model to calculate any output metric CDFs. The goal is to find an input

parameterization that accurately reproduces the calculated CDF. We can then check how

closely the resulting input parameterization matches the input used in the forward model;

recovering the initial input implies uniqueness of the solution. By using a synthetic input

distribution to find the target CDFs, we know the optimization problem is solvable. These

input distributions are truncated at p = 0.01 and p = 0.99, to ensure that the distribution

can be recovered exactly.

Three synthetic problems were solved to test the DUU framework (Table 3.2). The

first uses one probabilistic input to generate one target CDF, while all other variables are

known and deterministic. The second adds a known probabilistic input which influences

the same output. This shows how the method handles interactions between probabilistic

variables. The third example uses two unknown probabilistic inputs to determine two prob-

abilistic outputs. In this case, each input primarily influences a different output, but there

are interaction effects between the two; this demonstrates optimization stability in multi-

dimensional problems. Convergence studies of variable parameterization were performed

for Examples 1 and 2.
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Figure 3.4 Results of Example 1.

3.6.1 Example 1: One unknown probabilistic variable

The first synthetic problem involves one unknown probabilistic variable and a single

probabilistic output metric. The variable used is kMAP (µ = 0.9, σ = 0.05), which directly

affects PmaxLV. Figure 3.4 shows the tuned result, while Figure 3.5 shows the convergence

with increasing values of N. Table 3.3 shows the RMS errors from the convergence study.

Table 3.3 Convergence results of iCDFs for Example 1.

N X1 Output 1

Variable RMSE Metric RMSE

- (kPa)

10 kMAP 3.4e-3 PmaxLV 2.78e-5

20 kMAP 3.1e-3 PmaxLV 1.57e-5

40 kMAP 3.0e-3 PmaxLV 1.26e-5

3.6.2 Example 2: One unknown and one known probabilistic variable

The second example adds a known probabilistic input. The newly introduced variable

is Sfact (µ = 1.344 kPa, σ = 0.036 kPa), which also affects PmaxLV. Figure 3.6 shows the
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Figure 3.5 Convergence of resulting input CDFs from Example 1.

tuned result, while Figure 3.7 shows the convergence with increasing values of N. Table 3.4

shows the RMS errors from the convergence study.
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Figure 3.6 Results of Example 2.

3.6.3 Example 3: Two unknown probabilistic variables and two probabilistic

outputs

The final example involves two unknown probabilistic input variables that primarily

drive two separate model outputs. The input-output pairing of kMAP and PmaxLV is the
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Table 3.4 Convergence results of iCDFs for Example 2. The distribution of X2 is exactly

known by the optimizer.

N X1 Output 1

Variable RMSE Metric RMSE

- (kPa)

10 kMAP 28.0e-4 PmaxLV 25.8e-6

20 kMAP 9.7e-4 PmaxLV 8.5e-6

40 kMAP 6.2e-4 PmaxLV 2.0e-6
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Figure 3.7 Convergence of resulting input CDFs from Example 2.

same as in Example 1. Now, the geometry scaling variable kLV (µ = 1.05, σ = 0.01)

is added, which influences EDVLV. Both inputs influence both outputs, so there is some

cross-over effect in the optimization. Figure 3.8 shows the tuned result, while Figure 3.9

shows the effect of increasing values of N.

3.7 A Real-World Problem Using Patient Data

In the real-world, model input distributions are not known a priori. To simulate this,

we again use the same combination of variables and outputs as in Example 3, but we now

describe Gaussian target CDFs directly using patient and reference data. The mean for

these CDFs is the value obtained from the patient, while the standard deviation comes
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Figure 3.8 Results of Example 3.

from documented measurement errors in the literature (Ribezzo et al., 2014; Gordon et al.,

1983). Figure 3.10 shows the tuned result, while Table 3.5 shows the resulting RMS errors.

Table 3.5 Results for the Real-World example.

Output 1 Output 2

Metric RMSE Metric RMSE

(kPa) (mL)

PmaxLV 5.68e-6 EDVLV 2.04e-4

I

3.8 Discussion

Our results show that the proposed framework reliably discovered distributions of input

parameters which accurately reproduce target output distributions. All four of the studied

tuning examples resulted in reasonable input distributions. The three synthetic examples

demonstrated that the the approach works with multiple probabilistic inputs, whether one

or more of those inputs are being tuned. Accurate reproduction of the original input

distributions in those examples also exhibits consistency and reliability of the tuned result.
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Figure 3.10 Resulting input and output CDFs from a two-dimensional real-world prob-

lem, where both probabilistic inputs are tuned and do not have prior-known

solutions. The bounds of the plots of x1 and x2 represent the bounds of the

surrogate.
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The real-world PSM problem was solved with the use of patient data, further proving the

stability of the framework in non-idealized model configurations.

An unexpected discovery during testing of the framework was that many implemen-

tations of probabilistically-uniform CDF sampling will introduce errors caused by false

correlation when extended to multiple input variables. This is because the nature of the

CDF causes sample values to be monotonic. Randomization was initially used to combine

sample vectors, but this causes the optimization objective to become stochastic - preventing

convergence to a precise optima. The final implementation of multi-variable sampling, using

the tensor product, was selected due to this need for a deterministic sampling approach.

While our method was designed and tested to work with a broad range of models and

domains, there are still a few key limitations related directly to the tuned inputs. While the

algorithm was able to generate very good solutions for all examples shown, based on the

objective functions we defined, there is no computationally-tractable way to prove that the

solutions found are unique. This means that there may be other input distributions that

equally satisfy our objective, or produce a similar quality output distribution. Similarly,

there is no guarantee of a global optimum, which means that a better solution to the chosen

objective may exist. For these reasons, there will always be some potential for the tuned

distributions to arbitrarily differ from measurable values of the real-world modeled system.

Other limitations of the framework are inherent to the use of the surrogate. Though

the surrogate provides many benefits in terms of computational-efficiency and robustness, it

introduces the potential for divergence from the original model. The model sampling used

to build the surrogates for the studied examples were very dense, but it is difficult to define

the maximum error in the same units as the modeled output. This makes it impossible to

make any guarantees on the upper bound of inaccuracy at any unsampled location on the

surrogate. However, the surrogate will be exactly accurate at each sampled location and

some region surrounding it. Another limitation is that the bounds of the surrogate must be
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predetermined when it is generated. The issue with this is that it can be difficult to know

what value ranges will be needed to capture extreme tails of input distributions.

To summarize, the proposed framework enables further automation of model tuning with

uncertain data, increasing utility of computerized models in domains where reliable data is

expensive or unavailable. The use of a surrogate makes the methodology computationally

efficient, which allows even expensive models to be tuned in such environments. Our results

from tuning the CircAdapt model support the applicability of this tool for PSM in a clinical

setting with non-idealized inputs. This approach also has potential applications in broader

problems of model design.
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CHAPTER 4. SUMMARY AND CONCLUSION

This framework can facilitate the widespread use of patient-specific or subject-specific

models by enabling tuning from non-invasive data. The proposed approach enables further

automation of model tuning with uncertain data, increasing utility of computerized models

in domains where reliable data is expensive or unavailable. The optimization methods

employed are resource efficient and easily scalable to the needs and computational capacity

of the application. The use of a surrogate makes the methodology computationally efficient,

which allows even expensive models to be tuned in such environments.

Using an optimization framework, the information learned in the medical community

can be easily and reliably distributed, making it relatively easy to tune a new patient

model in a clinical environment compared with current manual methods. The framework

is also usable in a research setting, where a major concern is maintaining a consistent

protocol in cross-species research. By tuning both human and canine circulatory models

with no modifications to the implementation besides reference parameter values, it was

demonstrated that this concern can be naturally addressed. The application of this work

in cross-species research can contribute to improved treatment of CVD. There are also

potential applications in broader problems of model design.

Though the proposed framework addressed many of the issues currently impeding the

use of patient-specific cardiovascular models, there are still some key limitations to its

application. The first is that the use of noninvasive data imposes limitations on accuracy and

data acquisition. However, requiring invasive procedures reduces the value of the framework

as compared to more traditional explorative methodologies. The most efficient response is
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to determine the data sources which are most sensitive and justify the most effort to capture

accurately. UQ can then be used to mitigate the resulting decision uncertainty.

Additionally, while the algorithm was able to generate very good solutions for all ex-

amples shown based on the objective functions we defined, there is no computationally-

tractable way to prove that the solutions found are unique. This means that there may

be other input distributions that equally satisfy our objective, or produce a similar quality

output distribution. Similarly, there is no guarantee of a global optimum, which means that

a better solution to the chosen objective may exist. For these reasons, there will always be

some potential for the tuned values or distributions to arbitrarily differ from measurable

values of the real-world modeled system.

Other limitations of the framework are inherent to the surrogate. Though meta-models

provide many benefits in terms of computational-efficiency and robustness, they introduce

the potential for divergence from the original model. The model sampling used to build

the surrogates for the studied examples were very dense, but it is difficult to define the

maximum error in the same units as the modeled output. This impedes guarantees on the

upper bound of inaccuracy at any unsampled location on the surrogate. Another limitation

is that the bounds of the surrogate must be predetermined when it is generated. The issue

with this is that it can be difficult to know what value ranges will be needed to capture

extreme tails of input distributions.

This work could be further developed in a number of directions. One interesting addition

would be a tolerance for surrogate building. This would allow surrogate construction to stop

when it is good enough instead of requiring the potentially excessive number of evaluations

currently needed to expect accuracy over a broad domain. Specific to the domain of PSM,

there is also the potential to use objectives more directly related to physiology.

In summary, this work lays the initial foundation of an automated optimization frame-

work for patient-specific modeling with uncertainty quantification that could be applied in

a clinical setting to improve patient treatment and, most importantly, outcomes. It can
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also be used more broadly to support cross-species medical studies leading to more effec-

tive treatment options. Development of tools such as the proposed framework, along with

increasingly complex models, will substantially increase our understanding of diseases and,

thus, the standard of available medical care.
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